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Abstract
We describe e�cient algorithms to search for cases in which binomial coe�cients
are equal or almost equal, give a conjecturally complete list of all cases where two
binomial coe�cients di↵er by 1, and give some identities for binomial coe�cients
that seem to be new.

1. Introduction

Let us call a quadruple (n, k,m, l) with 2  k  n/2 and 2  l  m/2 a (binomial)
collision when k < l and

�n
k

�
=

�m
l

�
, and a near collision when

�m
l

�
�

�n
k

�
= d > 0

with
�m

l

�
� d3. The exponent 3 is somewhat arbitrary. Maybe 5 is a more natural

exponent (see the end of this paper).
Collisions have been studied by many authors. Some references will be given

below. In this note we report on computer searches for collisions and near collisions,
and give seven infinite families of near collisions.

2. Collisions

We list the known collisions. There are the double collision✓
78
2

◆
=

✓
15
5

◆
=

✓
14
6

◆
= 3003,
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six further sporadic examples given in the table below:

n k m l
�m

l

�
=

�n
k

�
16 2 10 3 120
21 2 10 4 210
56 2 22 3 1540
120 2 36 3 7140
153 2 19 5 11628
221 2 17 8 24310

and a miraculous infinite family given by✓
F2i+2F2i+3

F2iF2i+3

◆
=

✓
F2i+2F2i+3 � 1
F2iF2i+3 + 1

◆
for i = 1, 2, . . . ,

where Fi is the ith Fibonacci number (defined by F0 = 0, F1 = 1, Fi+1 = Fi +Fi�1

for i � 1). The infinite family is due to Lind [10], and was rediscovered by several
others such as Singmaster [15] and Tovey [18]. Examples are✓

15
5

◆
=

✓
14
6

◆
,

✓
104
39

◆
=

✓
103
40

◆
,

✓
714
272

◆
=

✓
713
273

◆
,

✓
4895
1869

◆
=

✓
4894
1870

◆
.

Twenty years ago one of us conjectured

Conjecture 1. ([20]) There are no other collisions than those given above.

The current status is as follows.

Theorem 1. There are no unknown collisions in the following cases:

• (k, l) = (2, 3), (2, 4), (2, 5), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6), (4, 8),

• (m, l) = (n� 1, k + 1), (n� 1, k + 2), (n� 2, k + 1),

• n  106,

•
�n

k

�
 1060.

Proof. The first two parts can be found in the literature.
The case (k, l) = (2, 3) was settled in [2]. The case (k, l) = (2, 4) was settled

in [12], and also in [19]. The case (k, l) = (2, 5) was settled in [6]. The cases
(k, l) = (2, 6), (2, 8), (3, 6), (4, 6), (4, 8) were settled in [16]. The case (k, l) = (3, 4)
was settled in Mordell [11] (actually, he solved an equivalent equation and seems
not to have noted the relation to binomial coe�cients).

The case (m, l) = (n�1, k+1) was settled in [18] (and yields the infinite family).
The cases (m, l) = (n� 1, k + 2), (n� 2, k + 1) were settled in [17].

The last two parts are the results of computer searches we report on in this paper.
Some details are given below.
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Earlier computer searches handled n  103 and
�n

k

�
 1030 ([20]). In the liter-

ature one also finds finiteness results ([8], [5]), and results on the number of times
an integer may occur as a binomial coe�cient ([14], [1], [9]).

2.1. Settling n  106

In order to find all collisions with n  N for some fixed N , generate a list of all
values

�n
k

�
with 2  k  n/2 and n  N . Sort it, and compare successive elements

to find duplicates.
Now the list has length about 1

4N2, and probably does not fit into memory. One
approach is to split the list into parts, e.g., into the sublists consisting of all binomial
coe�cients between 10e�1 and 10e, for all relevant e. We tried this in Mathematica
and did N = 34000 in 23h30m on a 2.6 GHz Intel i7.

A di↵erent approach is to have a table and a priority queue, both of size N . Both
contain the same elements. Initially both contain the numbers

�n+2
2

�
for n < N .

The priority queue is kept sorted. At each step the top two elements are compared
for equality. Afterwards the top element is discarded. When

�n+k
k

�
is discarded, the

new value
�n+k+1

k+1

�
is added, unless k � n. The new value needed is computed from

the old one via
�n+k+1

k+1

�
=

�n+k
k

�
+

�n+k
k+1

�
. Note that the value

�n+k
k+1

�
is present in

the table at index n� 1 at the moment it is needed.
Computation time for the algorithms as described is cubic in N if the precise

value of the binomial coe�cients is computed, since not only the length of the
list grows, but also the size of the numbers. Bounded precision su�ces to ensure
that (almost) collisions are unlikely, and reduces the time needed to O(N2 log N).
Almost collisions still occur (for example,

�102091
12877

�
= 1.256839391954534 · 1016800,�200954

9642

�
= 1.256839391954529 · 1016800). We used interval arithmetic to distinguish

almost equal numbers, and full exact multiple length arithmetic in the few cases
where the interval arithmetic did not su�ce. We tried this in C, with a custom data
type (since the usual data types do not handle large exponents, or are too slow),
and did N = 106 in 56h14m on an old 2 GHz PC.

2.2. Settling
�n

k

�
 1060

In order to find all collisions with
�n

k

�
 M we handle each relevant pair (k, l)

separately. Let lmax be the largest l such that
�2l

l

�
M . As we saw, the pairs (k, l)

with k < l  4 have been done already, so it su�ces to handle 5  l  lmax, and
for each l the values of k with 2  k  l � 1, with k � 3 if l = 5.

Given a pair (k, l), let mmax be the largest m with
�m

l

�
 M . Make a list of all

m with 2l  m  mmax, and discard the m for which
�m

l

�
cannot be of the form�n

k

�
. What is left are possible collisions, and in practice only actual collisions are

left.
The discarding is done via a sieving process. The function f(n) =

�n
k

�
is a poly-
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nomial of degree k in the variable n, with rational coe�cients. The denominators
of the coe�cients have only prime factors not exceeding k. For any prime p > k
the function f induces a polynomial map from Fp to itself. Let A(k, p) be the size
of the image. Experience shows that A(k, p) ⇡ (1 � e�1)p when k is odd, and
A(k, p) ⇡ (1� e�1/2)p when k is even. See below for more remarks on this function
A(k, p). Since 1� e�1 = 0.63... and 1� e�1/2 = 0.39..., a significant fraction of all
residues mod p cannot be of the form

�n
k

�
. Now pick p > l > k, and look at

�a
l

�
for

0  a  p� 1. Whenever
�a

l

�
is not in the mod p image of f , discard all

�m
l

�
with

m ⌘ a (mod p) from the list.
Repeating this sieve action for all primes less than 500 (stopping earlier when the

list has become empty) we found all collisions up to M = 1060. The largest prime
needed was p = 401. This took about 375 CPU hours total on a few old 2 GHz
machines. For large l the upper bound mmax is small, and sieving is very quick.
(In fact for l � 10 we sieved up to 10100.) The main part of the work are the pairs
(k, l) = (3, 5), (4, 5), where the list has length roughly M1/5.

2.2.1. On A(k, p)

There is a lot of literature on the size of the image of a polynomial on Fp. For
k = 3 and k = 4 the value of A(k, p) was found by Daublebsky von Sterneck [7].
One has A(3, p) = (2p ± 1)/3 when p ⌘ ±1 (mod 6), and A(4, p) = (3p + 4 +
�(�1) + 2�(5) � 2�(10))/8 for p > 5, where � is the quadratic character. Birch
and Swinnerton-Dyer [3] showed that ‘general’ polynomials of degree k on Fp have
an image of size akp + O(pp) where ak =

Pk
i=1(�1)i�1 1

i! . We conjecture in our
situation that the value Ak = limp!1

A(k,p)
p exists, and equals Ak = ak for odd k,

and Ak =
Pk/2

i=1(�1)i�1 1
2ii! for even k. This is true for k  5. Note that for even k

there is the symmetry f(x) = f(k + 1� x) explaining the smaller image size.

3. Near Collisions

3.1. Di↵erence 1

We know about the following examples with d = 1:
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n k m l
�m

l

�
=

�n
k

�
+ 1

6 3 7 2 21
7 3 9 2 36
11 2 8 3 56
10 5 23 2 253
12 4 32 2 496
16 3 34 2 561
60 2 23 3 1771
27 3 77 2 2926
29 3 86 2 3655
34 3 21 4 5985
22 5 230 2 26335
260 3 2407 2 2895621
93 4 2417 2 2919736
62 5 3598 2 6471003
28 11 6554 2 21474181
665 3 9879 2 48792381
135 5 26333 2 346700278
139 5 28358 2 402073903

19630 3 1587767 2 1260501229261
160403633 2 425779 3 12864662659597529

The above table is complete for the cases (k, l), (l, k) = (2, 3), (2, 4), (2, 6),
(3, 4), (4, 6), (4, 8) and (k, l) = (2, 8) (as one sees by finding all integral points on
the corresponding elliptic curves), and for

�n
k

�
 1030. We present the following

conjectures.

Conjecture 2. There are no other near collisions with di↵erence 1 than those given
above.

Conjecture 3. Given a fixed di↵erence d, the number of near collisions with dif-
ference d is finite.

The latter conjecture can be backed by standard heuristic arguments. The infi-
nite family of collisions seems like a miracle.

The cases (k, l), (l, k) = (2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6), (4, 8) cor-
respond to integral points on (double covers of) elliptic curves, that can in principle
be solved by the methods of [16], [17]. All except (3, 6) are curves in Weierstrass
or quartic form, and can in principle be solved completely using, e.g., Sage [13] or
Magma [4]. We succeeded in doing so using Magma for all except (k, l) = (8, 2).
See [16], Table 1, for the transformations from the binomial equations to the elliptic
equations.
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3.2. Infinite Families

When d is not fixed, there are a few infinite families:
✓

12x2 � 12x + 3
3

◆
+

✓
x

2

◆
=

✓
24x3 � 36x2 + 15x� 1

2

◆
(1)

✓
12x2 � 12x + 5

3

◆
+

✓
x

2

◆
=

✓
24x3 � 36x2 + 21x� 4

2

◆
(2)

✓
60x2 � 60x + 15

5

◆
+

✓
x

2

◆
=

✓
a

2

◆
(3)

where a = 3600x5 � 9000x4 + 8700x3 � 4050x2 + 905x� 77,

✓
60x2 � 60x + 19

5

◆
+

✓
x

2

◆
=

✓
a

2

◆
(4)

where a = 3600x5 � 9000x4 + 9300x3 � 4950x2 + 1355x� 152,

✓
240x2 � 240x + 62

5

◆
+

✓
3x� 1

2

◆
=

✓
a

2

◆
(5)

where a = 115200x5 � 288000x4 + 288000x3 � 144000x2 + 35995x� 3597,

✓
11340x2 + 11340x + 2835

9

◆
+

✓
y

2

◆
=

✓
a

2

◆
(6)

where y = 22680x3 + 34020x2 + 17001x + 2831 and a = 4134207084840000x9 +
18603931881780000x8 + 37201301530092000x7 + 43386206573682000x6+
32522432635935900x5 + 16249739546454750x4 + 5411800833695550x3+
1158443736409575x2 + 144626588131776x + 8023467184451,

✓
11340x2 + 11340x + 2843

9

◆
+

✓
y

2

◆
=

✓
a

2

◆
(7)

where y = 22680x3 + 34020x2 + 17019x + 2840 and a = 4134207084840000x9 +
18603931881780000x8 + 37214425997028000x7 + 43432142207958000x6+
32591336087349900x5 + 16307159089299750x4 + 5440510606648950x3+
1167056670132675x2 + 146062077851076x + 8126002273751.

How does one find such identities? In order to get
�b
3

�
+

�x
2

�
=

�a
2

�
, where x is

small, one needs 1
3b(b�1)(b�2) = (a�x)(a+x�1), a product of two nearly equal

numbers. If b = 3e2, then 1
3b(b � 1)(b � 2) = (e(b � 2))(e(b � 1)) and we can take

a� x = e(b� 2), a + x� 1 = e(b� 1) and find e = 2x� 1, b = 3(2x� 1)2, the first
family. The other families arise in a similar way.
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Are there many such identities? Let us say that the quality of an identity
�n(x)

k

�
+

d(x) =
�m(x)

l

�
is the degree of x in

�n(x)
k

�
and

�m(x)
l

�
divided by that in d(x). Then

our identities (1)-(7) have qualities 3, 3, 5, 5, 5, 3, 3. These are the only identities
of quality at least 3 that we know of. Maybe there are no others. Maybe there is
a number ↵, supposedly  3, such that there are only finitely many identities of
quality at least ↵.

It follows from the existence of the identities (1)-(7) that there are infinitely
many near collisions, even with

�m
l

�
� d5. Maybe there is a number �, certainly

� > 5, such that there are only finitely many near collisions with
�m

l

�
� d� .
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